ESL for Space-Based Image Processing

Lockheed Martin Space Systems Company, Denver MAPLD 2008

LOCKHEED MARTIN

Saul H Weiss

0000 9/3/2008 1

Introduction

- Projects and Experiments
- Results
- Lessons Learned
- Looking Forward

Hubble

- 9 Month Technical Capability Demonstration
 - Image processing on space
 HW
 - Ongoing research algorithms
 - 2 EE, 1 CS new to Handel-C[™]
- Natural Feature Image Recognition
 - OpenCV C++ libraries
 - Research status, updated by FPGA team
 - FPGA vs MicroBlaze™ Partitioning
 - Custom Floating Point Unit (Vectors/Matrices)

Hubble Results and Lessons Learned

- Capability Verified on Alpha-Data Xilinx Virtex-II FPGA Board
- Dual P4 Xeon 3.2Ghz w/ hyperthreading. ~10fps
- FPGA 40Mhz ~5fps

- C-style language faster than straight to HDL
- Hardware ٠ acceleration key for image processing

ARPO

- Autonomous Rendezvous and Proximity Operations
 - 5 Month Tech Demo
 - 2 FPGA Designers
- Refined partitioning and implementation approach
- Camera, RS422 interfaces
- Created generic Handel-C, Microblaze base design

ARPO Results and Lessons Learned

- Re-use of Hubble Image
 Processing Libraries
- Tool flow verified through repeated use
 - Time from concept to demo nearly halved
- Verified in Hubble EDU (4 Xilinx V2 FPGAs)
 - 30 fps
 - closed loop life-sized ISS docking mockup

Used with permission of SEAKR Engineering, Inc.

DCU NCC-TTP IRAD

- Non-Conventional Computing Transformational Technology Program led by Tim Gallagher
 - 8 Month Research Program
 - 2 Full-Time FPGA Designers
- Algorithms designed in Matlab/Simulink
- Implementation verified using
 - Matlab/Simulink[™] (Mathworks[®]) for baseline comparison
 - Link for Modelsim (Mentor Graphics[®]) for cosimulation

Orion Vision Processing Unit

- Relative Navigation Image Processing and Compression of
 - Star Trackers
 - VNS (LIDAR)
 - Docking Camera
 - Situational Awareness
 Cameras
- Multiple FPGAs configured inflight based on Mission phase requirements

Orion VPU Analysis and Design

- "Firmware" (ASIC/FPGA) **Development**
 - Under Software Management
 - Meet the intent/rigor of Software **Development Plan**
- UML for Requirements and Interface Analysis
- The Mathworks Matlab/Simulink models for Development and Verification

- Agility[™] Handel-C and PixelStreams for FPGA logic
- Link for Modelsim Co-simulation for Verification

Orion VPU ESL Tool Flow

Lessons Learned

- All Tools have Strengths and Weaknesses
 - Know their Limitations
 - Work with their Strengths
- Do Not Underestimate Benefits of Tool Integration
- Good Partitioning is Key but can be Challenging
 - Early enough for head-start SW
 - Late enough to avoid big impacts from changes
- Automated generation is faster than direct implementation

Acknowledgements: Preston Faiks, Tim Gallagher

Looking Forward

- C-style Languages Provide Proven, Efficient Balance of Abstraction, Visibility, Performance
 - Handel-C Impulse C
- Matlab Tools Direct to HDL from Algo Enviro.
 - AccelDSP SynplifyDSP
 - Simulink HDL Coder
- Automated translation from requirements and system modeling (UML/SML) to Matlab/Simulink
- Tools greatly matured in recent years
- Continued tool use and feedback leads to further improvements

Continuous learning, innovation and improvement

